

Toughening Software Protections

By

Sabuj Pattanayek

V1.0 April 6th, 2002

V1.1 April 21st, 2002

V1.2 June 13th, 2002

Background

 Although this paper would have been ultimately written, much impetus was

provided by the Federal Government’s (U. S. Custom Department’s) investigation into

Drink Or Die (DOD), the “underground” software securities group. The following

critique on software licensing systems given in this essay is meant to increase the

effectiveness of already available software protections by shedding light on their

vulnerabilities and strengths. This paper will also attempt to demonstrate how software

hackers think, what tools they use, why they attack certain targets, and how to keep

software from being “cracked”. It is hoped that software authors and protectionists will

take the given recommendations seriously (or at least attempt them experimentally to

some degree).

 The Internet has created a medium by which software authors can advertise their

evaluation, shareware, and demo software applications for users to download and

examine. By software applications I mean everything but games and visually stimulating

interactive software1. Websites such as ZDNET’s HotFiles (http://www.hotfiles.com)

and CNET’s Download.Com (http://www.download.com), allow authors to post easily

such software according to utility. Alternatively, authors post download links of their

evaluation software on their own Internet web pages and public FTP2 sites. The majority

of these titles allow a certain level of licensed evaluation. For example, a software may

1 Interactive games and simulations on digital versatile disks (DVD’s).

2 Users can anonymously login to public FTP or file transfer protocol sites to download evaluation

software.

http://www.hotfiles.com/
http://www.download.com/

allow a user to operate the software for a certain time (e.g. five minutes or thirty days), or

may only allow a certain number of runs (the software may be executed a maximum of

ten times), or may disable functions such as saving and printing, or may simply display

nagging messages reminding the user to buy the software. These restrictions are lifted

when the user fully licenses the software.

 Software licensing is done through a variety of means ranging from relatively

simple registration or serial codes to more elaborate (not necessarily more effective) key

files3 and dongles4. Hackers and software authors themselves, soon discovered that they

could debug, disassemble, and reverse engineer these security mechanisms. This would

allow them to find vulnerabilities and loopholes, ultimately leading to the emulation of

any license required by the software. These people became known as “crackers”, a term

(and its derivatives) that I will no longer use because of its inherent negative

connotations. Information regarding licensing mechanisms held only by software authors

and debugging techniques known only to programmers adept in machine languages5 was

disseminated by the rapid growth of the Internet. Hypothetically speaking, the

information6 and the tools7 are available today to anyone who is patient, has a curious

3 Usually a binary or text file which unlocks certain features in the software.

4 A hardware device usually connected to the parallel port (printer port) or USB (universal serial bus) port

of a computer that communicates licensing information with the program, thus unlocking certain features of

the program.

5 All CPU’s (central processing units) at “low level” execute some form of Assembly language or

machine language. The compilers of high level (object oriented) languages such as Pascal, Basic, and C++

all translate their respective languages into the Assembly language understood by the CPU.

mind, and an AOL (America Online) account.

 What will follow is a critique of the various types of licensing schemes and the

software protections which secure (or claim to secure) the licensing mechanisms. If the

narrative has been difficult to follow or understand thus far, it will become more

technically involved, and thus difficult reading for anyone who does not possess some

knowledge of computer programming. Although the majority of this text will not

reference directly much computer code, it is assumed that a programmer interested in

creating better protections will seek out the code by which the security methods

mentioned may be implemented.

What tools do software hackers and reverse engineers use?

 There are various debuggers and disassemblers available that allow reverse

engineering of executable and non – executable code. I will cover mainly the ones that I

am familiar with. These are Compuware Numega SoftICE (available with Compuware

DriverStudio and Driver Suite), URSoftware W32Dasm, Datarescue Interactive

Disassembler Pro (IDA), Oleh Yuschuk’s OllyDbg, and Eugene Suslikov’s Hiew. All of

these serve a similar purpose, that is to display the low level x86 assembly language of

6 For examples of such texts see

http://www.google.com/search?hl=en&safe=off&q=how+to+remove+software+protections.

7 Programming and debugging tools (programs which disassemble the target software’s compiled

executable code into Assembly language both interactively at runtime and also when not being executed)

are similarly available by querying search engines:

http://www.google.com/search?hl=en&safe=off&q=debug+program+reverse+engineer+tools.

http://www.google.com/search?hl=en&safe=off&q=how+to+remove+software+protections
http://www.google.com/search?hl=en&safe=off&q=debug+program+reverse+engineer+tools

the target code on all Microsoft based operating systems, either in real time or after

disassembly has been completed.

I. The software and computer industry’s premier debugging tool for Windows

based machines is SoftICE. Originally intended and still used for the development of

Windows device drivers, it has become a double - edged sword that has allowed hackers

and programmers alike to analyze and modify code in real time (both in memory and on

disk) without having to recompile the object code. I would have a difficult time believing

that the geniuses who developed this software did not realize the power it would give to

curious individuals. The program has become so ubiquitous and abused that many

authors have included anti – SoftICE code in their software8. In turn, hackers have

created programs such as IcePatch9 and FrogsICE10 to protect their valuable asset from

being detected and their goals from being thwarted. I will discuss how to best implement

and use debugger detection to ward off hackers in the “General Strategies” section.

 Most hackers who regularly use SoftICE have an extensive knowledge of

Windows core API (Application Programming Interface) functions. These functions are

located in two main DLL’s (Dynamic Linking Libraries) that are at the heart of the

Windows operating system, KERNEL32.DLL (KERNEL.DLL is the 16-bit counterpart)

and USER32.DLL. All development platforms included with Microsoft’s Visual Studio

(and Visual Studio .NET versions) platforms use imported functions from these DLL’s to

do tasks like creating windows. SoftICE has the ability to load any DLL or other

function library and then read its function exports section. This gives the user the power

to set a breakpoint (using the BPX command in SoftICE) on any function or address in

8 See http://linux20368.dn.net/crackz/Tutorials/Protect.htm for detailed methods on how to code

against the use of SoftICE.

9 Located at http://linux20368.dn.net/protools/files/debuggers/icepatch.zip.

10 Located at http://linux20368.dn.net/protools/files/debuggers/frogsice.zip.

http://linux20368.dn.net/crackz/Tutorials/Protect.htm
http://linux20368.dn.net/protools/files/debuggers/icepatch.zip
http://linux20368.dn.net/protools/files/debuggers/frogsice.zip

memory which he believes is being called by the target program. For example, the

function ShowWindow is almost always called when creating, drawing, or re – drawing

an object on the screen. If a nagging message such as a “Trial expired” window is

constantly appearing, it is possible to set a breakpoint in SoftICE by doing “BPX

ShowWindow”. When the function is called by the program, SoftICE will appear and the

user may begin tracing through the assembly code. It is easy to see the implications of

this, when one realizes that many software protections (such as FLEXlm and Wibu –

KEY) use functions embedded in external DLL’s. Thus, it is always a good idea to

statically link or embed DLL files that are worth hiding directly into the executable code.

 SoftICE can also be used to find string references within object code. Once

found, it returns the address in memory. Continuing with our “Trial Expired” example, it

is possible to search for this string in the object code by giving the command “s 0 l ffffffff

‘Trial Expired’”. Then the user can place a “break on memory access” on the memory

location returned from the string search by using the “BPM” and “BPR” commands.

When the program attempts to access the “Trial Expired” string reference in memory

SoftICE will be triggered.

 Alternatively a user can use the command “HWND” to list the current window

and other on – screen object handles in memory. Then by using the “BMSG” command,

a user can place a breakpoint on a handle reference and SoftICE will be triggered when

that object is accessed. One can see how useful this may be in tracking down where in

the object code certain object handles are referred.

 Additionally, access attempts to parallel ports used by dongles and other

external hardware locking devices can be monitored through the use of the “BPIO”

command to trap calls to IRQ ports. Access to system interrupts, such as those used by

the keyboard, CD-ROM, and other drives can be trapped using the “BPINT” command.

Keystrokes can be intercepted before the target program receives them.

II. IDA Pro is perhaps the most highly configurable and most complex

disassembler on the market. One of the key features of this program that has been abused

by hackers is its ability to apply FLIRT “signature files” to a disassembly. FLIRT “sigs”

are used to identify functions within the disassembly. One legitimate purpose of this may

be to locate statically linked functions from DLL’s used by Visual C++ (MSVCRT.DLL

and MFC*.DLL). Hackers have instead created “sig” files for various versions of

FLEXlm, Rainbow Sentinel dongles, and HASP dongles. This allows the hacker to

locate the hexadecimal address of certain key functions such as the Sentinel SuperPro

dongle’s initialization function “sproFindFirstUnit” and FLEXlm’s “lc_init” and

“lc_checkout” functions. The code at the address of interest can be replaced with an

“INT 3” assembly “opcode”. Then, in SoftICE a “BPINT 3” command can be issued to

intercept the “INT 3” opcode upon execution. Since IDA is quite meticulous in its

disassembly, it is also perhaps the slowest disassembler. One alternative will be

discussed next.

III. W32Dasm is a limited, yet quick alternative to IDA Pro. It has the ability to

easily display references to all imported and exported functions in the object code of

interest. It can also display all string references and dialog references used as resources

in the object code. Locating a string reference such as “Trial Expired” can be as simple

as double clicking on the string in the W32Dasm string references window. The

assembly code which accesses the string is instantly shown. It is good practice to not

hardcode text strings into the object code. Instead the string “Trial Expired” can be

dynamically created at program execution.

W32Dasm also has a built in real – time debugger which is more user and

beginner friendly than SoftICE. It also includes an API reference manual of sorts, that

displays function prototypes whenever core system functions such as those from

KERNEL32 and USER32 are called while W32Dasm is in debugging mode. W32Dasm

has become so popular with hackers that several modifications for this program have

been created to make it even more powerful and easy to use11.

IV. OllyDbg unlike SoftICE is a debugger that does not operate in Ring 0, that is, it

does not situate itself between the operating system and the main CPU (this is why

SoftICE loads itself into memory before Windows initializes), but rather runs directly as

a Windows 32 – bit (Win32) executable. This is one of the most recent debuggers that

have been created for Windows systems. It has many of the same functions and abilities

as SoftICE, but its interface can be intimidating. OllyDbg has become popular for

reverse engineers working with Windows XP, since even the latest version of SoftICE

included with DriverStudio v2.6 has been reported as having troubles with Microsoft’s

newest operating system. OllyDbg is also a good alternative for many users since it is

available free of charge.

V. Hiew, short for “Hackers View”, is still being developed by its author. It is a

hex - editor, binary file viewer, disassembler and assembler all in one. But unlike IDA

and W32Dasm it does not fully display function references. By disregarding this option,

the author has created a program which gives an instantaneous and “dirty” disassembly.

This program is mainly used by hackers in conjunction with more powerful disassemblers

and debuggers. Once the user knows what and where to modify in the object code, it is

simply a matter of loading up the file in Hiew and making the modifications directly to

disk. It is more convenient to use than a simple hex – editor since it has the ability to

show the equivalent disassembly for the given hex code.

VI. There are also many other forensics and analysis tools used by reverse engineers

from time to time. Filemon12 allows a user to see all the files being accessed by the

11 See top of page at http://linux20368.dn.net/protools/decompilers.htm.

12 Available from http://www.sysinternals.com/ntw2k/source/filemon.shtml.

http://linux20368.dn.net/protools/decompilers.htm
http://www.sysinternals.com/ntw2k/source/filemon.shtml

operating system as well as by running programs. This is often used to locate license

keyfiles and other data files that are accessed by programs. Regmon, also created by

SysInternals allows a user to view how the system and programs running on the system

access the Windows system registry. Often license keys, RSA encryption seeds, and

other pertinent information to a program, such as the date that it was installed (and how

many days have passed since install) are kept in the registry.

 CodeFusion13 is a patch generation engine that is used by many hackers to create

executable patch files that can modify other target files. Patches can be created in various

ways. One method is by giving CodeFusion the hex addresses, and the bytes to be

changed at those addresses. Another method is by file comparison, where the original

target file(s) is compared with the altered file(s). In either case the location and the bytes

to be changed at that location are stored in the patch file. The created patch file is usually

very small (less than 50 kilobytes), and gives the recipient of the patch the ability to

discover how the target files are altered by the patch, and what effect those changes can

have on the program. More than 95% of DrinkOrDie “releases” included an executable

patch file and the original unaltered demo, shareware, or evaluation program setup files.

ProcDump14 is a “memory dumper” that can write the contents of any process or

file loaded in memory to disk. This method of analysis is often used by hackers against

programs that are packed and or encrypted prior to being executed. That is, before a

packed or encrypted program can execute, it must usually unpack and or un – encrypt

itself. The unpacked and un – encrypted “virgin” product is loaded into memory where it

can be written to disk using a program such as ProcDump. ProcDump also comes built in

with several scripted unwrappers for commercial packing schemes such as ASPack,

Armadillo, TELock, and older versions of the popular commercial protection scheme

VBox. In addition ProcDump can be used to edit the PE header of Win32 executables.

13 Located at http://my.magicpage.co.il/Comp/kobik/download/codefs30.zip.

14 See top of page at http://linux20368.dn.net/protools/unpackers.htm.

http://my.magicpage.co.il/Comp/kobik/download/codefs30.zip
http://linux20368.dn.net/protools/unpackers.htm

IonWorx Software15 has realized the threat these tools can pose to protections, and has

created modules for Delphi and C++ Builder development platforms that can be

integrated into a program prior to compilation. These modules contain code to crash

debuggers, disassemblers, and system monitoring programs such as those discussed

above.

There are various options and tools16 a reverse engineer can use to analyze a target. New

tools are created quite often, mostly to “un – do” the packing or encryption done by

commercial protections schemes. One such recent example is Tsehp’s Revirgin17. This

small utility was created for the sole purpose of rebuilding trashed or damaged IAT’s

(import allocation tables) created as the result of applying commercially available

wrappers such as VBox and CDillaLM to executable code. Without an intact IAT, a

Win32 executable will always crash when attempting to call a core Windows function or

any other imported function reference (which it does quite regularly). To a large extent,

Tsehp’s tool has automated a task which would have otherwise taken a reverse engineer

hours, if not days of work.

 This is just one example of how the software protection game is further

propagated. I would be obliged to say that an entire industry has been created based on

this game. New exploits are found, many of which I have already delineated. Soon there

comes a need to patch the holes or create a new protection scheme. The industry grows

due to the new technology, new jobs are made, and new ways of thinking about the

15 See http://www.ionworx.com/ADPII.htm.

16 See http://protools.cjb.net.

17 Available at http://www.woodmann.com/fravia/exe/revirgin.zip.

http://www.ionworx.com/ADPII.htm
http://protools.cjb.net/
http://www.woodmann.com/fravia/exe/revirgin.zip

problem is the result. Then a reverse engineer or hacker comes along, defeats the

protection, and the cycle restarts.

1) Q: How do I prevent the licensing system from being compromised?

A: Do not provide a licensing system in downloadable demos, evaluations, and

sharewares. Do not provide a target.

 As trivial as the following suggestion may seem, it will greatly prevent the

majority of software protections and thus software titles from being exploited. It will go

a long way to ending the software protection game that exists between hackers and

authors, and put more blame on the true pirates who simply steal and duplicate software

with included licenses. I still do not understand why the majority of software authors

make available for download versions of their software with all of the program’s

functionalities intact (within the executable code) albeit crippled to some extent. That is,

authors find it necessary to provide versions that are time limited, limited by number of

runs, and limited by crippling functions that still exist within the program code but are

blocked off behind a “locked door”. Nowadays it is much easier for an individual to find

a patch or a key – generator for shareware and demos on the Internet18 than a fully pirated

program. How does one prevent such software from being exploited?

I. Do not offer software for evaluation purposes if it includes all the code and thus

18 See http://www.astalavista.com.

http://www.astalavista.com/

all the functionality the fully licensed version includes. If the “Save” option under the

“File” menu is “grayed out”, make sure that “ungraying” it will have no effect. The

demo version must be truly crippled in that it does not include necessary code to execute

a certain feature (e.g. saving). Then there is no reason why the author should go to any

lengths at all to provide a licensing system (unless it is simply to distract the hacker into

thinking that there is actually a target or something behind the “locked door”).

II. Relativity theory tells us that time is not absolute, thus the software author

should realize that the passage of time on a computer can be emulated or falsified. With

very few exceptions (that will be discussed in section 5) time limiting full versions of

software titles provides the easiest route for a hacker to enable the program for an

indefinite amount of time. If you must provide time limited software, make sure it is

fully crippled in some manner, and that notification of being time limited is only

provided once (e.g. during installation). Then leave it up to the hacker to figure out why

the program is not starting after the time limit has expired. For example, do not provide

audible (as in beeps) or visual notification (as in nagging pop-up windows) that the

evaluation time limit will expire in a given amount of time or that it has expired.

In summary, do not give the hacker a target. Make the hacker think there is nothing to

attain behind some “locked door” (even if there is). Always remember that advanced

reverse engineers (I will refer to as “RE” or plural “RE’s” henceforth) will nonetheless

fully disassemble the object code themselves and conduct their own investigation of what

the author’s software includes and does not include, regardless of what the author may

claim. So it is a good idea to always distribute truly crippled demos and shareware

versions.

 Sometimes authors who only provide evaluation versions on request (as in high

end engineering software applications useful to a computing minority), that is versions

not usually available for download from their websites, leave full evaluation versions or

full commercial versions lounging around on their anonymous login company FTP sites.

While this does provide easy access for customers to pick up version updates and

upgrades, it also provides the hacker a target software application. It would be much

safer to provide each customer with individualized logins and passwords. Access to the

FTP server is minimized and FTP access logs are much easier to analyze.

2) Q: I need a licensing system or software protection for my software. What are

the options? What are their strengths and weaknesses?

 The majority of software available today are “generic” duplicates of “name

brand” software created by large corporations (Adobe, Autodesk, Symantec, etc) who

have arsenals of programmers working for them. Software hackers usually do not care

for such “generic” software (or most software at all) and attack any protection simply

because it is exists. Usually hackers will attempt a protection simply because it may

provide a challenge (or an alternative to boredom), like a crossword puzzle. I suggest the

author spend more time coding something novel into the features of the program itself.

Then if there is really something worth protecting, the following guidelines may be of

assistance.

 I highly recommend that you do not use most commercial software protections or

licensing schemes. If a hacker is able to compromise a single commercial protection,

then all software titles protected or licensed using that mechanism have been effectively

compromised. However, the main problem with using any commercial protection

scheme is that the company selling the protection rarely provides any in depth

information about how the protection really operates. Does it use simple validation

functions or does it integrate itself more with the software? The author is left to blindly

implement the protection using only the specified instructions given to them by the

protection system’s documents. The hacker can access these documents19 just as easily as

the author and understand the protection’s implementation. Failure of the protection

almost always occurs because of the implementation of the security. Imagine for

example, a steel door attached to a wall made out of paper. For the hacker it is much

easier to circumvent the door by making a passage through the paper wall. In this case,

the security was poorly implemented. I will now critique several licensing protection

systems based on my own experiences of reverse engineering the various schemes.

3) Dongles (External Hardware Locking Devices)

19 Implementation of most security systems is done through API calls to DLL’s or other library files. The

company provides instructions on which API functions to call and what order to execute them in. Even if

these documents are not available to the hacker, it is possible to simply disassemble the DLL and then look

at its exported API functions. More and more commercial protection building software today claim to offer

simple drag and drop installation of the protection into any executable code. Some of these protections

include Aladdin’s Vbox (created by Preview Systems) and several protection solutions offered by Bit-Arts.

These programs offer strong protections in that they provide the author (and thus the hacker) with little

knowledge of how the target code is being protected. Protections such as Vbox and Bit-Arts solutions will

be discussed in section 5.

 The basic premise behind a dongle or any other external hardware licensing

mechanism is that it communicates codes and license information with the software when

the application requests such information. The majority of applications downloadable

from the internet that are protected with dongles revert to some crippled demo version of

the software or simply do not launch, usually notifying the user with a nagging window

message when the program does not detect the dongle. As explained in the earlier

section, there would be no need for a dongle licensing system if the demo version were

already truly crippled.

 Most dongles in use today are created by Rainbow Technologies (Sentinel,

SentinelSuperPro), Aladdin Knowledge Systems (Hardlock, HASP, MemoHASP,

TimeHASP, etc), and Wibu Systems (Wibu - Key). These are the weaknesses of these

systems:

I. The company will usually provide software development kits (SDK’s) for

programming the license systems into the target code. These give software authors and

hackers, information on the licensing system’s API functions. The company literally

provides the hacker with the internals of the security system! This would be similar to

ADT (a leader in private home security systems) giving the internals of their mechanisms

to anyone interested, and then selling the security system to customers. Even if the

author directly embeds the protection into his target code (without referencing external

DLL’s), the hacker knows what signatures to look for (e.g. a certain hexadecimal string

or certain variables passed to key functions of the protection system). Calls to Sentinel

and SentinelSuperPro (SSPro), HASP (all variants), and Wibu - KEY dongles are easy to

locate within a program which implement these devices. It only becomes a matter of

time before missing pieces of the puzzle are figured out.

II. The software must query the dongle and then check to make sure the returned

values are correct. The hacker can easily reverse engineer validation algorithms within

the software and emulate the proper dongle return codes. The main weakness is that

fabricating and programming dongles specific for a particular application can be very

time consuming and expensive, thus most software titles retain the same dongle (which

returns the same codes) through various versions of the program. If the hacker acquires

the dongle itself, its memory can be fully explored (dumped), emulated, and eventually

all return codes known. The dongle then becomes obsolete.

I do not recommend working with dongle systems unless customers are willing to absorb

the costs necessary to implement the dongle. If a dongle licensing system has already

been invested in and is being used by customers, chances are it has been compromised.

The following characteristics are strengths of dongle systems and implementation

suggestions to better the systems:

I. Do not use validation functions which return simple values such as 1 (dongle

OK) or 0 (dongle not present). This is a completely incorrect approach because it

assumes the dongle is returning serial numbers or codes required to “unlock doors”.

Remember that there are no “doors” in software. If the hacker can see some of the

software code, it usually means all of it can be seen and analyzed (unless the software

incorporates self modifying code at runtime, polymorphism, or encrypted or packed

code…this will be explained later in this section).

 The approach should be to somehow integrate the dongle memory with its

program. Most dongles have large memory areas that can be used to store program

instructions necessary for the operation of the software. For example leave out certain

program instructions (program code) necessary for the software to operate. There is

nothing more irritating or diffusing for a hacker than a crashing program. Most hackers

will simply give up believing that the author forgot to weed out bugs in his own program.

 After receiving the memory from any dongle (or from inputs entered by the

hacker directly into program memory at runtime), do not immediately validate them, do

not create nag messages notifying the hacker anything is wrong. Create a hash from the

data value, chop it up into smaller bytes and scatter it in memory. Use the scattered hash

values as indices for arrays or data structures. If this is properly done (the dongle returns

correct values), then the data structures should be ok, but if improperly done (hacked or

dongle returns no values) the data structures can be mangled (or should stay mangled).

This may ultimately cause the program to crash at runtime or return strange values from

vital program functions (making it useless). Dongle query results can be used to return

program execution addresses (EIP hexadecimal register values, e.g. 0040A73Fh) in small

bytes. The addresses, once recompiled byte by byte, can be used to control which

functions the program calls and how the program is executed (or whether it crashes).

This creates several challenges for the hacker. First the hacker must somehow keep track

of all this dongle data floating about in memory, and then trace how, when, and where the

data is recompiled, and finally trace at what location(s) the software uses this data to

decide execution paths, and finally what the software should attempt to execute as the

next step. To make things even more challenging these addresses can be encrypted

within dongle memory and then decrypted at runtime using other values returned from

dongle queries, key files, windows registry, or any other external location.

 In another example of integrating license data, some CNC (computer numerical

control), CAD (computer aided design), CAM (computer aided modeling) software use

licensing information to directly determine the machining and cutting process. Incorrect

license information can be used to calculate incorrect machining paths. If the software is

a 3D graphics program, incorrect information can be used to render images improperly.

This can be accomplished by encrypting mathematical constants into the dongle memory

or creating tables of encrypted variables to be passed to functions (referred to as the

stack). Once again, direct “yes or no” validation routines should not be used in these

processes, but somehow the license information should be intimately tied into making

crucial calculations. All of this creates a “tight rope” for the hacker, yet one that does not

follow a linear and straight path.

II. Alter the dongle memory with each successive major version of the program.

Offer dongles with different memories to different customers. Do not create a universal

dongle for the software. This is like creating a hard coded serial number and giving it to

all customers. However, if the dongle memory is successfully integrated into the

program and incorporates the dongle data in many aspects of the software, it may be

difficult and time consuming to rewrite all the algorithms for multiple dongles with

different memories. In this case a more modifiable variable may be used in addition to

the dongle, such as an additional licensing system which uses encrypted data or key files

created for various levels of licensing. Details on key files, encrypted serial numbers,

and how to use them with dongles will be explained in section 6.

III. Newer versions of the HASP API implement HASP objects which incorporate

self modifying code (SMC). SMC itself is a nightmare to trace through when debugging.

The HASP object SMC also contains many unconditional jumps which can easily

frustrate any experienced RE. The code becomes very confusing because it seems to lose

its causal and deterministic behavior.

IV. The generic “out of the box” implementation for the Hardlock dongle is by far

the most effective. It packs and encrypts the executable object code (making it

impossible to disassemble the code), destroys its import allocation table, and has built in

debugger detection20. Without the dongle itself it is nearly impossible to recreate the

20 Debugger detection is implemented into many commercial protections. Usually once the program

import allocation table, rendering a useless and crash prone software title.

4) Complex Commercial Licensing Schemes

 These schemes are complex in that they provide a wide variety of licensing

options and licensing levels for the author to easily integrate into the software. They are

however the most weak and easily exploited of all protections since the internals of the

licensing schemes are well documented. These include GLOBEtrotter (FLEXlm),

Rainbow Technologies (SentinelLM and ElanLM). I highly advise against the use of any

of these protections. The downfall of all these server based licensing systems is that they

are all built on “yes or no” validation functions that are easy to discover and alter into

providing correct return values. Out of the box implementations offer no CRC checking

of the object code to test whether it has been altered. Here are several more weaknesses:

I. Since the internals of the FLEXlm licensing system are quite well documented,

they can be altered to provide any level of licensing. The new version 8 of FLEXlm

implementing ECC (elliptical curve cryptography) are no better than the original

versions. They simply include more encrypted keys and seeds, some of which cannot be

easily recovered from the FLEXlm data structure without brute forcing. However for the

RE, acquiring keys and seeds is only necessary to recreate original license key files. In

this case it is much easier to go around the steel door than to go through it. It does not

detects active debuggers, such as Numega's SoftIce, TRW2000, etc the program notifies the user and ceases

execution. One good technique to use with debugger detection is diversion. The message displayed by the

Hardlock wrapper is something like "Hardlock not found" (it's been a while since I've tinkered with one)

when in actuality it should say "Debugger detected, don't even think about it!".

take long to emulate the license within the software code itself because the validation

functions (e.g. lc_init and lc_checkout) used in the older versions of FLEXlm still exist in

this newer version in one form or another.

 Several authors have attempted using some tricks to bolster FLEXlm. Some

have attempted to encrypt “FEATURE” names. These are the names of the “licenseable”

features of the software found in the FLEXlm license text files. The problem is that the

names must be decrypted before passing them to the main licensing function

(lc_checkout), creating the opportunity for the RE to “intercept” the actual feature name,

and ultimately create a license file. Others have used non windows API’s to read the

license files. This makes it more difficult for the hacker to place debugging breakpoints

on windows API’s that read files (e.g. CreateFileA). While manually reading the file, the

author checks to see if valid feature names exist, if they do not, the program calls the

lc_checkout function passing it a bogus feature name. Otherwise, the program decrypts

the valid feature names and passes them to the validation function. The drawback here is

that the hacker could acquire an “evaluation” license file from the company, write down

the feature names, and then acquire the remaining features not included with the

evaluation license by checking the variables passed to the validation function. In an

extreme case, the RE could go around digging in the code and ultimately find the feature

comparison algorithm without any external reference license files.

II. SentinelLM and ElanLM licensing schemes should also never be used. Both

implementations generally use API’s linked through DLL files. The DLL’s can be

directly altered to return correct values since both SentinelLM and ElanLM use simple

validation functions. Even if the author were to statically link the DLL into the

program’s object code (thereby ridding the hacker of the opportunity to intercept DLL

calls), the functions themselves remain the same, as do the data structures that are pushed

onto the stack before the function is called. The hacker can easily look for these cues as

notification of finding the function of interest. Otherwise, a supremely lazy RE can use

IDA Pro signature files in the object code disassembly to locate the functions of interest.

5) “Your evaluation has expired. Please buy this software.”

 Commercial evaluation and trialware protection schemes have progressed since

the early days of Preview Software’s TimeLock. Today they are much stronger,

impenetrable to the casual and intermediate hacker, and are updated almost monthly.

Most of these companies cater to low end software companies because of the feasibility

of their protections. These protections include CDillaLM, Crypkey, Vbox, and several

Bit - Arts solutions. Why have these protections progressed? Why and how are safer

cars created? Hackers stress test protections (usually unofficially) and unfortunately the

results of these tests are distributed. Luckily, many hackers that conduct their crash

testing experiments ultimately end up working for the protection companies themselves.

 Most of these “plug and play” protections offer wrapping of executables and

direct injection of the protection into PE (portable executable format) sections. This

gives the software author no clue as to how the protection has been automatically

implemented, and thus it does not so easily avail itself to the RE. If I were a software

author investing in a protection system for program, and knew nothing about coding

protections myself, then I would use one of the protections mentioned in this section.

 These protections use all the tricks in the book: executable wrapping and

packaging, import allocation table destruction, anti - debugging, anti - disassembly, anti -

memory dumping, SMC (which usually ends up doing nothing and is simply a

distraction), mind boggling amounts of CRC checking (both in memory and physically

on the disk to check whether crucial files have been altered), self regenerating code,

hiding of crucial files everywhere on disk21 and encryption of data into the Windows

system registry, and most importantly perhaps more than 50% of the protection’s code is

not based on Windows Kernel API, but is rather created using raw 32 bit assembly. What

does all this do? It prevents the hacker from easily analyzing the protection code and

from circumventing the steel door by simply going around it. The hacker is forced to

understand, to master the intricacies of the locking mechanism itself. It is like attempting

a crossword puzzle written on an amorphous, asymmetrical three dimensional object.

The RE has to analyze the protection from all angles. This can be frustrating for the

“group” oriented hacker who competes with other groups to be able to circumvent as

many protections as possible. However, true hackers will stick with a challenge because

this is what they live for, and like any other protection, vulnerabilities may be discovered.

Information spreads like wildfires on the Internet. If the protection is compromised, all

software protected using the same version of the protection are at risk.

6) General Strategies

 The following section is for those who are brave enough to try their hand at

21 If a program is installed and its evaluation period ends, yet the user desperately wants to use it for a

longer period without paying, usually a total reformat of the hard drive will suffice in wiping out any data

the protection uses as a reference. CdillaLM however hides itself in the MBR, or master boot record (thus

a regular format has no effect). The user will have a surprise in store when attempting to run a reinstalled

copy of the program in question. However, running FDISK /MBR will clean the MBR and return it to its

original state.

creating their own protection scheme. If the time and interest are available this is the best

way to go. A protection made from scratch ensures that only the author knows its true

weaknesses, and if it is a strong licensing system, the hacker will have little or no prior

knowledge of what to expect or how to go about diffusing the system. Many of the

strategies explained in the section on how to implement better dongle protections and

even those used in Vbox, Crypkey, etc can and should be used whenever possible. The

following are some general strategies and summaries of basic ideas developed in this

paper that may be implemented in a protection.

I. The name of the game is not to create a simple door with a locking mechanism,

rather the protection must be fully integrated with as many aspects of the program as

possible. Use the license data as indices for arrays, linked lists (in mangling data), or for

creating execution addresses, anything that may crash the program if improper licensing

data is received.

II. A key file can be used like a dongle, except a key file has an unlimited amount

of storage that can be exploited. The key file should be used as a data file that can be

used to store vital runtime program code. All the dongle implementation tricks discussed

earlier can be applied. In fact the methods can be applied to any set of data. Do not give

the key file a noticeable name such as LICENSE.DAT, hide the license data somewhere

in an inconspicuous DLL file. Encrypt the data so it does not look like serial numbers or

codes.

 A key file used in conjunction with a dongle bolsters the total security

mechanism. Integrate data from the dongle and from the key file. Use one set of data to

decrypt the other or vice versa. Both sets of data can then be used in actually operating

the program (and not just for validating the license data). Create unique key files for

each customer.

 On top of this, another unique key or data set22 may be used. Now there are two

unique sets of licensing data for each customer (the data in the file and the data the

customer has to directly enter into the program) and there is also the dongle. All these

sets of licensing data can be integrated with each other and with the program. The goal is

to create a “spider’s web” that will catch any ambiguous licensing data and crash the

program.

III. Do not give functions obvious names such as “licenseDecryption”,

“crashingMechanism”, or “weHaveBeenHacked”23. Hackers know that most traditional

programmers use top down methods, that they prefer creating multiple functions to do

various tasks, and use these functions over and over again. Do not create functions for

licensing tasks! Usually a hacker can just “NOP” out a licensing function (or make it

return “1” or “0”) without it having any effect on the program. Make sure this is not

possible. Integrate the licensing code with the programming code, such as in functions

which control rendering of graphics, or with functions that allocate memory for crucial

processes. Most importantly, do not create simple validation functions and use these

validation functions repeatedly. Use inconspicuous variable names for licensing error

flags and any other variables related to the licensing mechanism.

IV. If anti - debugging mechanisms have been put in place, do not immediately

22 The program may directly ask the user for this information at runtime.

23 As trivial as this suggestion may seem, a French CAD program actually used the

“weHaveBeenHacked” function name (in French). It was used (unsuccessfully) as a checking

mechanism to determine whether certain license data was legitimate or had been manipulated.

The availability of online language translator makes it possible for any hacker, whatever his or her

origin, to translate function names.

notify the hacker that the debugger has been found lurking in memory. Set a flag

somewhere. Run the program as if nothing is the matter and then crash the program

randomly. This is legal if during the installation of the program, or in the “readme”

documentation, the author states something similar to “This program may not operate

properly if debuggers are in use”. Similarly if the author decides to create a time limited

protection (although I greatly advise against this) for demo or shareware versions, a

warning such as “This program may not operate properly after 30 days of evaluation” can

also be placed as a prerequisite to beginning the installation process. The author may

then use whatever discretion when deciding how to kill the program after 30 days of use.

V. Delay the actions that are taken when improper licensing data has been found. A

smart trick to play on a hacker is to immediately validate entered license data using easy

to debug compares. The hacker, analyzing the debugged code, can and will only create

data to fit the comparison routines. Then notify the RE that valid or invalid license data

has been entered (e.g. via a simple message box). However, also incorporate the license

data into the program using alternative algorithms in locations or functions that have

nothing to do with licensing process. Create other algorithms to more “deeply” check the

license. For example the original easy to reverse algorithm may have only checked for

ten characters and checked the third character to ensure it was an integer. Elsewhere the

licensing data can be verified as having a length of fifteen characters and that the third

character (which must be an integer) is divisible by three. Set an inconspicuous error flag

and crash the program at some later random time if everything does not fall into place. In

general, make a habit of putting error checks in many locations, and putting pieces of the

licensing data in many locations in memory. Remember that this entire strategy can and

should be done with licensing data from any source, be it dongle, key file, or data entered

by the user at runtime.

VI. Using scripted languages such as Visual Basic (compiled to pcode rather than native

code), InstallShield24, Java, and the Microsoft Data Executable format (MDE) have both

their disadvantages and advantages. Scripted languages cannot be understood simply by

debugging them into their respective irreducible machine language code. This is for

various reasons. Scripted languages have their own interpreters (e.g. MSVBVM60.DLL,

VBA324.DLL, Java Runtime Engine or the JRE). The program sends something similar

to a stack of instructions to the interpreter which decodes the stack of data and executes

the program. So what the hacker spends most of the time debugging is not code within

the data module but rather code in the interpreter. Thus, altering the interpreter will have

no effect on the program itself, but may cause crashes and undesirable results. The

hacker is forced to attempt to reverse the protection algorithms by deciphering the entire

scripting language itself (by understanding how the data sent to the interpreter is actually

interpreted).

 The bad news is that to my knowledge, most scripted languages have their own

disassemblers and debuggers. Pcode Visual Basic debuggers25 and disassemblers have

been created, as have decompilers for InstallShield and Java26. I have not seen a MDE

disassembler, decompiler, or debugger. The MDE programming language is however

quite limited and inflexible, and is mainly used for software that interacts with data

sources (MDB’s, etc). Scripted languages are also usually very slow (and bloated in

size), since the code is not compiled into the fastest and most efficient available machine

language algorithm (as in C).

7) My protection is just fine and dandy, but my program is simply being pirated!

24 InstallShield is a scripting language used mainly in creating software installers.

25 See http://vacarescu.addr.com/WkT/vbdebug/.
26 See section entitled “Setup decompilers” and “Java” at

http://linux20368.dn.net/protools/decompilers.htm.

http://vacarescu.addr.com/WkT/vbdebug/
http://linux20368.dn.net/protools/decompilers.htm

 Let it be assumed that only free, hundred percent crippled shareware and demo

versions of programs are offered on the Internet. The software author does not have to

worry that his program will be hacked from this aspect (unless the hacker is simply trying

to “rip” code)27. There will however always be a customer who decides to share his

purchased copy of the full program with someone else. For this reason, each software

package received by the customer should be made unique with respect to invisible and

integrated licensing mechanisms mentioned earlier in this paper (e.g. in the form of

hidden key files, serial numbers, etc). In this manner the software package (the code

itself) can be “watermarked” as if it were legal tender. Some CD’s made today even have

“holes”, or large areas where nothing has been burned, wedged between regular data.

Unfortunately, the advent of programs such as CloneCD and other cloning technologies

have made most copy protections useless28. This is the problem with piracy today.

People do not regard software, videos, and music as being directly equivalent to money.

The ubiquity of copying and sharing has made it legal in the eyes of many.

 How can the government curb the normalization of the piracy of software and

other media? Simple, make it as illegal as counterfeiting money. Although the idea may

be simple, the current difficulty is tracking pirated versions. A few years ago the

27 This is not altogether true since it is possible for a hacker to inject code (from an uncrippled version or

original sources) into the crippled version making it act as if it were the real deal, but this is usually an

exercise in programming and reverse engineering. For people interested simply in the program itself, it is

much easier to acquire a pirated version.
28 In Australia the cloning of CD’s has recently been publicly commercialized through the use of machines

similar in concept to paper copying machines. It is believed that the end user is solely responsible for how

the material is ultimately used.

common data pirate would not have thought it feasible to share or distribute “DVD Rips”

or VCD’s. Advancements in data storage and Internet bandwidth technologies have

made this possible for everyone (but mostly for people attending colleges and universities

on Internet2 connections). In contrast, corporations and the government have been

proceeding relatively slowly in the incorporation of this technology for its uses in

copyright enforcement. I however, foresee that it will one day be possible to keep track

of almost every legitimate (and illegitimate) copy of Microsoft Windows and Adobe

Photoshop (possibly the two most prolifically pirated programs) installed on computers.

This may seem far - fetched, but is possible granted how interconnected society is

becoming through the Internet. Who would have thought that household picture frames

could download and display images from Kodak.com?

 The Internet began as a government military project and thus I believe it is

possible for the government to regain control of areas that have become chaotic. Piracy,

theft, and fraud occurs online almost (less than) every second, yet it is “anonymized” and

thus becomes invisible or undetectable. It is however, possible to defeat the pirates and

hackers at their own game with the help of skilled individuals who understand how such

people think and operate.

